a string of bytes the number of which are specified by the length fleld. It is
encoded as defined in the BER for that type.

6.4 ASN. 1 EXTERNAL Type (Universal Header)

An ASN.1 EXTERNAL type is a universal header. All ASN.1 compliant protocol
interpreters can extract and interpret an EXTERNAL without ambiguity. The
definition of EXTERNAL is quite flexible, but that flexibility is not needed here
to meet the basic objectives of a universal header.

A simplified EXTERNAL type is encoded as:
[tag= class=0,p=1,number=8] [length] [objectid] [payload]

Tag and *length* fields are encoded as described above. *Object ID* provides
unambiguous self identification for the header. *Payload* is a sequence of bytes
that are interpreted according to the standard indicated by the object ID.

Object ID is itself an ASN.1 type with tag, length, and value flelds, and is
encoded as:

[tag=0,0,6] (length] [id value]

Object ID value is a sequence of bytes that represent the hierarchical
identifier for the referenced standard. ID values are assigned, registered, and
administered by CCITT and ISO in the course of standards development. Or, ID
assignment can be delegated to member bodies or companies or organizations
(thereby, SMPTE could assume responsibility for administering a portion of the
ID space.) The root prefix values are:

CCITT [0}
recommendation[Q] : CCITT committees
question[1] : CCITT Study Groups
administration[2] : country PTTs (country code)
network operator(3] : X.121 organizations

ISO(1]
standard(O] : ISO standards
registration authority[1] : ISO authorities
member body{2] : member bodies (country code)

identified organization[3] : organizations
Joint ISO CCITT(2] : assignment delegated to ANSI

- A few prefixes are of particular note. iso.standard registers all ISO standards.
ccitt.administration and iso.memberbody are assigned to sovereign bodies
(identified by their international telephone country code). iso.organization is
assigned to international organizations. These cover virtually all the situations
under which a header identifier will need to be assigned.

An ID value is encoded as a sequence of bytes. The first two levels are encoded
in the first byte -- a.b = 40*a + b, a <= 3, b <= 39. Remaining levels are encoded

-23-

as one or more bytes as needed to represent the numerical value for that level.
If a value is greater than 127, it requires more than one byte; the MSB of the
byte is set to indicate that the value is continued in the next byte, and so on.
For example, iso.standard.jpeg is three bytes:

fso.standard.jpeg :: 1.0.10918 = [40]([128+85]1[38]
Similarly, Group 3 Fax is identified as:
ccitt.recommendation.t.4 ::0.0.20.4 = [0][20][4]

The extensibility of the ID value field permits up to 126 byte long IDs to specify
distinct IDs numbering to ~24882 or ~107265.

Payload is an ASN.1 type with tag, length, and value flelds, encoded as a
sequence of bytes that are interpreted according to the standard indicated by

the *Object ID*.
[tag=2,0.1] [length] [payload value]

[footnote *1: At this writing, JPEG is nearing but not yet an ISO standard.
Thus, though thought to be correct, the number here (1.0.10918) is not yet
official.]

6.5 ASN, 1 Descriptor

In addition to the EXTERNAL type (for use as header), ASN.1 defines other basic
types to represent a variety of values, including: booleans, integers, reals, byte
strings, character strings, universal time code, etc., and constructions of values
into arbitrary data structures.

Although a distinction is drawn between header and descriptor in this report,
the ASN.1 approach permits a single mechanism to serve both functions. The
full benefits of ASN.1 become apparent when it is applied to the descriptor.
Especially the ability to construct new types and to incorporate references to
other standards. (See current ISO work on Image Interchange Format (IIF) for
an example of ASN.1 use in defining descriptors.)

6.5 How ASN, 1 Addresses Qbjectives

The following describes how an ASN.1 header/descriptor addresses the
objectives stated at the beginning of this report.

Universality -- ASN.1 header/descriptor promotes and enhances universality:

¢ It complies with and recognizes existing standards and practlcés. All
existing and future ISO/CCITT standards are uniquely identified by an

-24 -

ASN.1 Object ID.

It addresses the issues of sovereignty. ISO/CCITT administers and
delegates assignment of Object IDs to subcommittees, member bodies (by
country code), and organizations. The complexity of this task and the
benefits of leveraging existing administrative structures should not be
underestimated.

It facilitates coordination among television, telecommunications, and
computer industries.

It sets a minimal level of compliance for low cost receivers. Furthermore,
the advanced stage of definition, tools, and expertise will facilitate the
rapid deployment of header compliant devices.

Longevity -- ASN.1 has inherent longevity:

All fields of ASN.1 types (tag, length, value) can be extended. Payload
lengths from a few bytes to ~102303 can be represented. Similarly, Object
IDs can range from a few bytes to ~107265 bytes.

It has a preexisting registry, and is self maintaining. ISO/CCITT already
registers, administers, and delegates assignment of Object IDs.

It defines immutable identifiers. Once an Object ID is assigned, it exists
“for all time". In the future, when an old ASN.1 header is recognized, there
is no ambiguity to the referenced standard.

Extensibility -- ASN.1 is inherently extensible:

All fields of ASN.1 types can be extended without redefinition.

New types can be defined and their encoding automatically generated
without the need to introduce new rules.

Since ASN.1 is fully defined, any compliant receiver and equipment are
guaranteed to be able to recognize future extended ASN.1 headers.

Interoperability -- ASN.1 is inherently interoperable:

[]

It has a well-formed public definition.

It is already in use in several important applications and industries.

It complies with existing and developing standards (including image
standards).

It allows standards and structures to cross reference each other. The
video data stream can contain structures defined by other standards, and
vis a versa.

It permits the same information to be interpreted in different ways within
different domains without prejudice. To the video industry, the
information is a continuous video stream. To the telecommunications
industry, the same information is a sequence of bits to be transmitted. To
the computer industry, that sequence of bits is interpreted as data
structures.

It permits independent formal definition of intellectual property protection,
encryption, and other source coding descriptors by appropriately
sanctioned expert groups (either ad hoc or extant).

Experts groups and standards bodies can autonomously develop and

-925-

evolve specifications within domains of their expertise. The ASN.1 cross
referencing capability achieves a degree of interoperation and coordination
among parallel activities -- coding details are automatically resolved,
avolding redundant and/or conflicting efforts.

Cost/Performance Effectiveness --

It is straightforward to recognize and decode with a single uniform
procedure. ~

Uniform decode hardware and software can be shared among industries
and applications ylelding economies of scale.

Existing tools and expertise can reduce the time and cost of deployment.

Compaciness --

“

ASN.1 is compact, but not so much as to complicate decoding or to
compromise other objectives. A typical ASN.1 header would be ~15 bytes
for a 1 megabyte payload (i.e., ~.0014% overhead).

A 7-byte ASN.1 header can be realized using the standard's indirect
reference option. (In fact, a 2-byte context specific header may be
realizable.) Given typical payload sizes, however, it is unlikely that this
level of compactness will be required -- small payloads are either
aggregated or infrequently used, especially in the video domain.

Rapid Capture --

An ASN.1 header is signified by its first byte tag field (equal to 8) followed
by length, object id, and payload. Thus, an ASN.l1 header is
straightforward to recognize in the data stream.

ASN.1, like any length/identifier header, provides early identification of the
payload.

Editability --

ASN.1's structuring capabilities permit arbitrary editing, sequencing,
structuring, and embedding of payload streams. All of this is
accomplished within a single uniform mechanism, and without requiring
unnecessary decoding of the payload itself.

-26 -

APPENDIX A

TRANSPORT HEADER

AQ Introduction

The header descriptor design provides for binding of a transport header to the
main header. This is accomplished only by mandating that the transport
header not be separated from the main header and its associated data which it
is transporting. The function of the main header is to identify the data which
follows. The function of the transport header is to help the main header and
possibly its payload in its journey from origination to destination.

The following transport header design is "work in progress", and therefore is
meant to be an example rather than the final structure. It supplements the
discussion in Section 5.4. The design issues and interactions are a bit complex,
so the principles of the transport header design are best illustrated by way of a
correctly designed example. If adjustments are made to this design, then care
must be taken concerning affects of such adjustments to the rest of the design
and the functioning of the transport header. In particular, there is a rigid
requirement that certain fields be pre-specified as to length, or as to length-
specification (type fields) in their meaning.

It is necessary that the transport header be totally independent of any
standards described by the main header. This is required because it may be
necessary to change transport characteristics for all main headers on a given
data stream, irrespective of the standards or formats of those main headers.

An example might be the need to provide improved error protection when
moving a data stream from a high reliability fiber to a high error rate radio
frequency transmission.

A.0.1 ASN.1 Transport Header Yet To Be Designed

The transport header design example illustrated here works together with the
header/descriptor design as described in sections 1 through 5 of this SMPTE
report.

No transport header has yet been designed for the ASN.1 syntax, illustrated in
section 6. Thus, the ASN.1 syntax is, at present, only suitable for error-free
channels which preserve the data and its order without contention from source
to destination. In order for the ASN.1 syntax to meets its objectives of
interoperability with imperfect or congested channels or media, a mechanism
similar to the transport header example shown here will be required. It is
hoped that a transport header design might be developed for the ASN.1 syntax
system, possibly modelled on the transport header illustrated here, together
with the main header/descriptor design. The enormous flexibility of ASN.1
syntax must be tempered to provide a limited number of options for transport
headers, each with appropriate protection/correction mechanisms. It is hoped
that registration rules and flexibility in ASN.1 can also be used to provide a

-27-

suitable format transport header design which is properly restricted. Byte
alignment is also part of the structure of length fields. If bit alignment is
needed for ASN.1, then further suitable adjustments will be required.

Another method to provide transport assistance is to convert from the main
header/descriptor design of sections 1 through 5, to and from the ASN.1
notation. Since a transport header design is available for the main
header/descriptor, conversion to this header would provide access to a
transport header. When re-entering error and contention free environments,
the header/descriptor could be re-converted to ASN.1 syntax.

If the ASN.1 method becomes popular, then it is hoped that a suitable ASN.1
transport mechanism might be developed.

Al Desi ves for h T

. The transport header must be standard-id independent, so that it can
apply to all header standards equally and uniformly across the entire data
stream.

o The transport header should be removable without damage to the
function of the main header which it is helping to transport.

. A transport header must be able to be added to any header format or
descriptor format without changing any of the meaning.

. The transport header formats should support "in the clear" protection of
the main header and payload, where the bits are not altered, such that
the transport header can be added and removed without any adjustment
of bits within the main header, its descriptor and its payload.

. In addition to support for "in the clear" protection, more efficient
protection should be supported (such as Reed Solomon), where the
header, and possibly its payload are encoded.

. The transport header architecture should support one or more
mechanisms for correcting burst errors.

o Optional support should be provided for encryption of the main header's
descriptor, as well as optionally the data payload.

o The transport header should support authorization and use information,
in helping the transport system determine which destinations are
appropriate for further or final distribution.

. The transport header architecture should support backward play through
the data stream.

. The transport header should support optional rapid header
synchronization capture.

. The transport header should support communications networks by

-28-

providing information concerning the data's priority and value.

. The transport header should support timing reconstruction when utilizing
networks which distort timing or ordering of data.

. The transport header should support data ordering requirements, when
utilizing networks which might re-order the data.

. The transport header architecture should strike a balance between the
opposing forces of flexibility and ease of use. Thus, a small number of
options should be carefully chosen for maximum flexibility, with the small
number of options allowing a simple interpretation, It is the fact of having
a small number of options which allows easy interpretation.

o For transport functions which encode the header and/or its data, a
simple "in the clear" length field should allow devices which cannot
decode such data to skip to the next transport header.

. For devices which cannot process the transport header, a simple "in the
clear" length field should allow such devices to skip directly to the header.
Further, such devices should be able to easily interpret the transport
header format such that they can quickly determine whether the main
header is "in the clear", and therefore directly readable.

The following example design meets these objectives.

A2 Three Types Of Transport Header Allocated In the Header Key

In order to meet these objectives, there are three types of transport headers.
The first is the basic transport header, which provides the majority of transport
capabilities. The second is the Redundancy Transport Header, which is used to
protect against burst errors. The third is the Reverse Transport Header, which
is used for reverse play.

Three of the two-byte header key's 256 possible codes are required for the
transport headers. In the current 2-byte header key design, one byte is
dedicated to error protection. The other byte is split into two 4 bit fields.

The first 4 bit fleld is the "length type" fleld. Codes 15 and 16 (numbers 14 and
15) are unallocated. These two codes enable the second 4 bit ID field to be used
for special purposes such as designating the three transport header types. 32
such codes are available, leaving 29 codes unallocated if 3 codes are assigned to
the three transport header types.

The basic transport header provides most of the capabilities which are required.

A3 Functions Of The Transport Header

The functions of the transport header are as follows:

-29-

Sync reinforcement for those data transport media where it is desirable to
rapidly or simply sync to the headers or header-data combinations on

switching between streams.

Improved error protection via extra protection bits for both the transport
header and the main header and its descriptor.

Conveyance of priority for the main header and its data, for those cases
where a channel may be operating at capacity and thus where channel
controllers must decide which headers and their payloads it must drop.

Authorization keys may also be needed in order to verify priority. Network
accessing methods, such as pricing-biding techniques, would also be
supported here.

Encryption and Security information for the main header's descriptor,
possibly combined with the descriptor's own encryption and security
information, in order to protect the data stream following the main

header.

The protection optionally provided by the main header's descriptor may
need to be augmented when the data stream is sent through public or
vulnerable exposed channels.

Authorization information. Such information would indicate who could
receive, who could edit and re-assemble with other material, etc. Also,
copyright and royalty fee information would be enabled here. Perhaps
automated mechanisms of fee for usage would be supported through this
field.

Sequence numbers may be added where networks are used for transport
which may reorder packets. In addition to sequence numbers, the
combination of the transport header may require information from the
main header's descriptor in order for the network to be able to guarantee
delivery within known latencies and time windows. For out-of-order
delivery, some networks can control the amount of time between a given
delivery and the delivery of neighboring data. In the case of images and
audio, some devices can accept out-of-order information in their buffers
or processing units, but the time is constrained to within one or more
frames, or fractions thereof.

Timing reconstruction. For those applications where exact timing
relationships must be reconstructed from a mixed data stream, the
transport header and the main header's descriptor would communicate to
provide timing reconstruction information.

Reserved for future use.
Pad. There is a pad field at the end of the transport header in order to

make the length of the transport header plus the main header, its
descriptor, and optionally its payload come out to a length appropriate for

-30-

the error correction protection formats supported in item 2 (above).

The construction of the transport header involves a strict ordering of fields as
above, such that the sync reinforcement is always first, the error protection is
always second, etc. In this way, if each field is present, its location is easily
determined. The error protection field will always be in a known location, and a
"scope of protection" within this field defines those flelds which are protected in
both the transport header as well as in the main header and its descriptor.

A4 n H I

The redundancy transport header provides a special function for error
protection against burst errors on the data stream. Improved error protection
against burst errors is achieved via redundant copies of future and previous
headers (these transport headers providing redundancy will not be bound to a
main header, and therefore represent an exception to the binding property of
transport headers).

Such special redundancy transport headers will "stand alone" and be
~occasionally interspersed in the data stream. They will contain error-protected
copies (via either the efficient or inefficient method) of some future or previous
header, together with a pointer to that header, and a number indicating how
many headers forward or backward will be traversed before reaching that
header. The previous copies are useful for going backward through a data
stream, and for reconstructing damaged data streams on physical media, such
as disk.

Using a separate header key code, the redundancy transport header has the
following format:

—————— ——— ———— —— - — ——— — — - ————— v —— o T T~ — — . T T — T — — (T T —— T ———

| Transport | Protection | Pointer | Protection |

| Header | | To f [

| Key | <- | Header | <=iennnnn |

| Unique | i Being Duplicated | | more ->
| Code |] (Signed Number) | |

| 8 | 8 | 32 | 32 I

] Number of | Protection | Maximum | Minimum |

| Headers Forward | | Millisecond | msec !

| (or Backward) | <- | Tolerance | Tolerance | more ->
| (Signed Number) | | From Header|From Header |

| 16 [16 | 8 | 8 I

-31-

——————— — —— - — —— —— — A A T —— T Y 4D gy D o — A > — = " T Y S T A T — Y o b S o

Protection | Copy of Transport | Copy of Main

I !
| for max and { Header | Header/Descriptor |
| min tolerances | (if present) | | (end)
| | ! I
| 16 | (length varies) | (length varies) |

——————— ——— —— —— — — —— ——— — — ———— = T — . — " — . — T — —— T~ — S S ——— G T — . T —

The transport header key contains a separate special code indicating that this is
a redundancy transport header containing a copy of a future or previous
header.

This field could possibly be followed by a length field, indicating how to skip
past this duplicate header.

The pointer to the header being duplicated is analogous to a length field, but it
points past several headers to the header being duplicated. It is a signed
number so that it can reference previous as well as future headers. 32 bits of

protection are provided.

A number of headers forward or backward is provided, indicating the location of
the header being duplicated in number of headers rather than via a pointer

(length).

The maximum and minimum milliseconds tolerance flelds indicate the
tolerances for separation times between this copy of a previous or future
header, and the header itself. For channels which re-order, insert, and remove
data, information about separation constraints is provided by these fields.

A copy of the transport header is provided, if there is a transport header on the
header being copied.

Then finally there is a copy of the complete main header and its associated
optional descriptor. None of the payload is duplicated.

A5 Reverse Transport Header

In order to support reverse reading of the data stream, a reverse transport
header can be utilized. The reverse transport header immediately follows the
main header.

Thus the transport header is situated as follows:

Transport	Main	Data i Reverse	
Header	Header/	Payload	Transport
	Descriptor		Header

If the main header is preceded by a transport header, then the reverse transport

-32-

header will point back to both the main header and the transport header. If the
transport header is absent, then the reverse transport header will point back
only to the main header, and the length backward to the transport header will

be zero.

The reverse transport header format is as follows:

——— o —— o ———— o ———— " 1 T T —— A ———— ———— — — - o — T o " T~ —— " T "

Reverse]			Length		
Transport	Protection	Length	Protection	Backward	Protection]
Header		Backward		To	
[Key	<-	To Main	<-	Transport	<-
Unique		Header		Header	
I Code	I ! I !				
8	8	32	32	32	32

—— ———— ——— T > o A Y —— 140 T o ——— o P S T T — —— T - — — A —— i —— " T — - —— " f—— ——— T — T — T — o v ———

This design allows these reverse transport headers to be appended after the
main headers to allow backward traversal through the data stream.

It should be noted that when redundant transport headers are in use to protect
against burst errors, that reverse transport headers must follow each such
redundant header. In that case, the length backward to the main header will be
zero, and only the length backward to the transport header will have a non-zero
value.

Note that this header has a fixed length. Thus, when encountering this header
in the forward direction, no pointer to the next header in the form of a length
field is required. The fixed length of 18 bytes is pre-determined, and can be
used to skip to the next header. Also, there will never be a payload of data or
any attachment to any headers in the forward direction.

A6 Transport Headers and Device Capture

It is important to remember that all devices which can edit the data stream
must preserve the relationship of the pre-appended transport header to the
main header. Also, the post-appended reverse transport header must also
remain attached to the main header, if present. Thus, when a transport header
is read, the following two headers must also be read before assuming the
header and its data and transport have been passed.

When capturing a new data stream, it is necessary to read at least two headers
to determine if the first main header is valid. If it had been preceded by a
transport header which encoded the main header's descriptor and/or payload,
then the data will not be readable without the transport header. Thus, capture
is not achieved until the second header has been read, which would accomplish
the determination of the first valid header, and its transport header, if present.

A7 Transport Header Format

-33-

The transport header format is as follows:

— —— o — — — — —— — o — — o, S S o A . S S S . Ot S D e Sl S et P o B e D S B T S T T el T B > W S T T —— o

| Transport | Protection | Length | Protection |

| Header | | of Transport | i

| Key | <- | Plus Main | <- |

| Unique | | Header Plus | | more ->
| Code [| Data Payload | |

l 8 I 8 I 32 [32 I

| Length of | Protection | Sync | Error | Priority |

| Transport | | Type |Protection/ | & |

| Header | <- | |Correction..| Valid Bid |

! [| | Type | Type | more ->
I 32 | 32 | 4] 4 | 4 {

e —— s — —— o — —— — . —— " — " o a2 ——— ——— T ———— - — T ——— — Y — T —— o ——————— — o o i, T o o

| Author- | Encrypt | Sequence | Timing | Reserved | Protection |
j ization | | Number | | Future | For Previous |
| Type | Type | Type | Type | Type | 8 4-bit Types |
I 4 | 4 I 4 | 4 I 4 | 32 I
more ->

| Sync | Protection/ | Priority & | Authorization |

| Field | Correction | Auth for | Copyright and |more->
| (16 possible | (many possible | Priority/Bid | Use Field]

| lengths) | lengths) | (16 lengths) | (16 lengths) |

| Encryption | Sequence | Timing | Reserved | Pad |

| Field | Number | Field | for | Field |

| | Field | | Future | (variable|

| (16 lengths} | (16 lengths)| (16 lengths)| (16 lengths) | length) |

——— - —— S T T —— . ———— o T — ———— — . T o Tt . T — T — — . —— —— S e S . 2 S

{end of transport header ->)

Followed by a normal main header:

. . S ————— ——— — {7 o T T i Y . . " S T o = o T —— T —— ———— — v

| Main | Protect | Header

| Header| <- | Tail

| Key | | ->

| 8 | 8 | {length fields, descriptor codes, etc)

-34-

A.7.1 Header Code in the Header Key

The transport header begins with a normal header "key", consisting of one byte
of key information and one byte of protection, as for the main header. However,
the transport header uses a header key code reserved specifically for the
transport header. The transport header tail differs from the main header tail,
and has the format outlined above.

A.7.2 Length to Next Header after Main Header

The next field is a 32 bit length fleld, which points to the next header after the
main header attached to this transport header. This length may be required to
allow skipping past the main header and its data payload. This will be required
by those devices which cannot provide error protection decoding, when the
main header is protected using the types of error codes which scramble the
main header. This length is protected by 32 additional protection bits to
provide reasonably robust bit error correction, using the type of correction
which does not scramble the 32 bits of length (e.g. Hamming Code).

A.7.3 Transport Header Length

This field indicates the length of the transport header. It therefore forms the
mechanism to skip to the main header, if there s no desire to read any of the
transport fields, and if the main header is not scrambled due to error
protection, encryption, or other operations from the transport fields.

This field is also protected by a 32 bit field, using a non-scrambling error
protection code.

A7.4 Type Fields

There are eight 4-bit type fields, to allow 16 types for each of the eight fields in
the transport header. These fields are (1) sync, (2) error protection and
correction, (3) priority and authorization and bidding for priority, (4)
authorization for data use, (5) encryption protection, (6) sequence number and
out-of-order timing margins, (7) timing reconstruction information, and (8) a
final field reserved for future use.

The 32 bits of type fields are protected by 32 bits of protection/correction code.

A75 Sync

The first transport operation field is sync reinforcement. 16 types of codes are
possible, each with a permanently assigned length. These types and lengths
must be permanently assigned from the beginning. A possible set of 16
assignments for lengths might be: _

Two types of sync codes could be used, with designed unique spectral

-35-

signatures. Each of the two types of codes could have one of the following
lengths.

2, 4, 8, 16, 32, 64, 128, and 256 bytes

This would result in a total of 14 sync re-enforcement patterns. Sync type O
would indicate an absence of the sync re-enforcement field. Sync type 15 could
represent an additional special sync field, with a specified length.

It is necessary for all sync type lengths to be specified in advance. Although the
codes for sync themselves can be specified later, they can only be specified once
for each of the 15 valid sync types.

It should be noted that the transport header always begins exactly 26 bytes
prior to the first byte of the sync-reinforcement fleld. Once the sync
reinforcement field has been located, the transport header, and the main header
have been located.

A.7.6 Error Protection

None of the fields previously described. which precede the error
correction/protection field, will be protected by this fleld. However, all of the
fields following and including this error protection/correction field, starting at
the first bit, will be part of the error protection/correction group. The
protection will extend through the rest of the transport header, and on into the
iain header and its descriptor, and for some of the formats into the payload as

well

Since sync re-enforcement is used to capture the data stream initially, it is
probably not appropriate to error protect this sync. The sync codes are
designed to be found within a stream. If protection is needed for the sync field.
then special sync protection can be provided within the ample bytes available
for sync codes.

Two types of error protection are supported. One type allows the protected data
flelds to be read, as is, leaving them "clear" but augmenting them with
protection. This type is very inefficient. An example of this type of code is the
Hamming code. The second type scrambles all of the bits into a robust code,
such as Reed Solomon, for efficient protection. In the case of the efficient
protection, the fields being protected will be completely unreadable without
decoding. If the header format, the header length field, the descriptor type, and
many other crucial fields are protected in this way, those devices which cannot
decode the error correction would be unable to either read or skip the header.
Thus, the transport header will contain a "length field", protected in the
inefficient augmentation method rather than the efficient scrambling method,
which will allow devices to find this length field and thereby skip the rest of the
transport header and the entire main header, its descriptor, and its payload. A
second "length of transport header” field will also be present and protected via
the inefficient method.

-36 -

A.7.6.1 Intentional Inflexibility

In order for all of the above mechanisms to operate properly and efficiently, it is
necessary to limit the number of formats available in the transport header.
Perhaps eight or sixteen types of each of the fields should be provided for, with
all types being specified in advance. We are using sixteen as our example.
Thus, there would be sixteen error correcting code formats and {_ code lengths,
sixteen sync reinforcement field formats and lengths, sixteen priority flelds and
lengths, etc, with each fleld format having a specified length.

Since the error correction transport function is the most difficult with respect to
format, a very limited number of field options will be provided under the scope
of protection. Also, padding, which might be quite long, will be required at the
end of the transport header before the main header in order to make the total
length of the transport header plus the main header and its descriptor (and
possibly payload) to be a simple-to-correct convenient known length
corresponding to one of the sixteen protection types. ,

A.7.6.2 Possible Pre-Specified Protection Types
The pre-specified sixteen possible protection types might be:
Type 0 indicates that no protection/correction field is present.

Types 1 through 10 protect "in the clear", by inefficiently adding protection bits
without scrambling, as in Hamming codes.

Types 1 through 5 protect the transport header, the main header, and its
descriptor.

The types are as follows:

1. Protect all remaining transport header bits, beginning at the first bit of
the error protection/correction field, all main header bits, and all
descriptor bits. Do not protect any payload bits. The
protection/correction bits are applied on every group of 64 bits. The total
length of all flelds being protected, excluding the error code bits
themselves, must be a multiple of 64 bits. This is accomplished by the
use of pad bits at the end of the transport header.

This implementation requires that memory be available to store the correction
bits for the entire length of transport header, main header, and its descriptor.

For type 1, the total length of the protection code fleld is the total length over
16. Four bits for every 64 (68 bits total on 64 bits of data).

2. Sameas 1, but total length over 8. Eight bits protecting every 64 (72 bits
total for 64 bits of data).

3. Same as 1, but total length over 4. Sixteen bits protecting every 64 (80
bits total for 64 bits of data).

-37-

4. Same as 1, but total length over 3 (half as long as the fields being
protected). 32 bits protecting every 64 (96 bits total for 64 data).

5. Same as 1, but total length over 2 (the same length as the fields being
protected). 64 bits protecting every 64 (128 total for 64 data).

Types 6 through 10 protect the payload in addition to the transport
header, the main header, and its descriptor.

6. Same as type 1, except protect the payload as well. For type 6, the total
length of the protection code field is the total length over 16. Four bits
protecting every 64 (68 bits total 64 bits of data).

7. Same as 6, but total length over 8. Eight bits protecting every 64 (72 bits
total for 64 bits of data). -

8. Same as 6, but total length over 4. Sixteen bits protecting every 64 (80
bits total for 64 bits of data).

9. Same as 6, but total length over 3 (half as long as the fields being
protected). 32 bits protecting every 64 (96 bits total for 64 data).

10. Same as 6, but total length over two (the same length as the fields being
protected). 64 bits protecting every 64 (128 total for 64 data).

Types 11 through 15 protect by scrambling, as in Reed-Solomon coding, which
is efficient.

Types 11 and 12 protect the transport headeér, the main header, and its
descriptor.

11. Protect all remaining transport header bits, beginning at the first bit of the
protection/correction field, all main header bits, and all descriptor bits.
Do not protect any payload bits. The protection is applied using 16 bytes
on every group of 144 bytes. The total length of all fields being protected,
including the error code bits themselves, must be a multiple of 144 bytes.
This is accomplished by the use of pad bits at the end of the transport

header.

This implementation requires that memory be available to store the correction
bytes for the entire length of transport header, main header, and its descriptor.

For type 11, the total length of the protection code is 16 bytes for every 144.
Thus, there are 16 extra protection bytes in each 144 bytes being stored,
resulting in 128 bytes of data after decoding.

12. Sameas 11, but with 16 bytes protecting every 80 bytes, resulting in 64
bytes of data after decoding. The total of all lengths, beginning at the first
bit of the protection/correction field, must be a multiple of 80 bytes.

Types 13 and 14 protect the payload in addition to the transport header, the
main header, and its descriptor.

-38-

13. Same as 11, except the payload is also protected.
14. Same as 12, except the payload is also protected.

15. Same as 11, except 4 bytes protect 32 bytes (total of 36 bytes for 32 bytes
of data). This format is for short header formats, and provides no payload

protection.

A.7.6.3 Interleaving

In addition to the above mechanisms for error protection, some of the error
protection formats can invoke interleaving. Interleaving can substantially
reduce the problems associated with burst errors. Although the initial part of
the transport header is subject to being "wiped out" by a burst error,
presumably a copy of this section could be available previously in a redundancy
transport header. Thus, once the protection format has been determined, then
the rest of the transport header, beginning at the error protection field, plus the
main header, its descriptor, if present, and optionally the data payload, can all
be protected from burst errors via interleaving in addition to error correction
methods.

Pre-defined interleaving methods can be incorporated with some of the types
discussed above. Because interleaving is likely to involve as wide a spacing as
is-feasible, there will be a tradeoff between the length of the protected field, and
natural multiples of the error protection sizes. The error protection group sizes
for Hamming-type codes are much smaller than the error protection group sizes
for Reed-Solomon-type codes. Interleaving must be some multiple larger again.
Thus, useful interleaving may be restricted to longer lengths of fields being
protected. One possibility is to have the interleaving spacing be the error
protection group size divided into the total length.

However, this near-optimal format requires some complexity in unwinding the
interleaving. For long protected fields, this may also involve a buffer which is
the length of the fleld. Thus, there are potential issues to investigate with
respect to how to universally and generally specify a powerful interleaving
technique.

A.7.6.4 Error Detection

There is no provision for simple error detection in the above example types.
Such detection could be provided via cyclical redundancy code (CRC), fire code,
checksum, parity or other check method. Such may be useful in some cases.
However, the focus on error correction is based on the need for headers to be
interpreted without error in order to serve their function.

The descriptor in the main header can be used for detection codes for data

payloads which should be checked, but which need not be corrected. This need
not be standard-specific, since the descriptor can be standard independent.

-39-

Thus, error detection, as opposed to correction, is more appropriate in the
descriptor than in the transport header.

A.7.6.5 Parameters Of Error Protection

The parameters of error detection shown in the above type examples need
further investigation and refinement. The lengths and protection ratios
proposed are known to be implementable in existing hardware, and are
expected to be convenient in practices. However, further investigation of
optimal parameters for error protection may help reflne or revise the parameters
suggested above.

A.7.7 Priority and Authorization or Bid for Priority

Finite bandwidth resources, such as satellite channels, long fiber channels,
long real-time computer channels, terrestrial broadcast channels, and other
channels with long distances cause long latency which naturally prevents error-
retry. Thus, channel bandwidth allocation near saturation on real-time imagery
streams takes the form of packet collisions. Such packets are most naturally
the header/descriptor/payload combination, since each can have its own
priority, and since each forms a constant priority grouping. The constant
priority grouping would be the construction used by the originator.

When sharing a finite-bandwidth channel, it may be necessary to pass some
data and drop other data. In order for the channel's controlling device to fairly
determine which packets to pass and which to drop, priorities for packets might
be provided. In many spatial-frequency based compressed imagery formats
such as DCT, Sub-band, and wavelets, the high frequencies represent tiny
picture detail which might be lost without much picture degradation. However,
the spatial low frequencies, the audio, and the motion vectors must be heavily
protected, and may not be dropped without visible artifacts.

The type field would specify the length and format of the priority and/or
authorization fields that follow. The length might have 2/type length (two to the
power of the value in the type field, being 2, 4, 8, 16, 32, 64, 128, etc bytes).
Type O still represents the absence of the priority field.

Since the priority and their authorization fields will compete at the highest level,
it will be necessary for us to define their meaning at the outset. We will further
need to define the mappings between the shorter and longer versions of each
field.

The format of the fields might be as follows:

| Priority |
] 8 bits |

Type 1, 2 bytes:

———— - — s o s S

| Priority |
| 16 bits |

Type 2, 4 bytes:

| Priority | Authorization |
| 16 bits | 16 bits |

Type 3, 8 bytes:

| Priority | Bid/Value | Authorization |
| 16 bits | 16 bits | 32 bits |
Type 4, 16 bytes
| Priority | Bid/Value | Authorization |
| 4 }ibytes|{ 4 bytes | 8 bytes I
Type 5, 32 bytes:
| Priority | Bid/Value | Authorization |
| 4 bytes | 4 bytes | 24 bytes |
Type 6, 64 bytes:
| Priority | Bid/Value | Authorization |
| 8 bytes | 8 bytes | 48 bytes }i |
Type 7, 128 bytes:
| Priority | Bid/Value | Authorization |
| 8 bytes | 8 bytes | 112 bytes |

o —— o — —— - ——— . ——— " ——— Y —— - Yot ——— —— " —— 1 o i S

etc.

The priority field varies from 1 to 8 bytes, allowing very detailed priority levels.

-4] -

The Bid/Value field allows a packet to have a "bidding price” in a collision with
other packets. Such a bidding price would be a value if the price had
previously been accepted. A value would imply that tossing the packet would
break a contract for delivery of the packet. The meanings of the Bid/Value
fields would be tied directly to authorization codes, which would indicate the

following:

1. Whether the header was authorized to bid.

2. The "credit rating" (or importance) of the bidder. This could potentially
weight the priority field.

3. Whether the bid had been previously accepted, such that the Bid/Value
field was the value paid for the payload's delivery. In such a case, tossing
the packet would violate the contract. Presumably such a case would
only occur when more contracts had been made than were available, such
that packets were only tossed by other similar accepted-bid packets with
an established value. This is a similar problem to "overbooking" on
airlines.

4, Authorization may affect the bid/value. If commissions are paid on some
bids or values, and not on others, the net bid or value may differ. This is
similar to the problem of bids in different currencies, or direct bookings vs
using agents. Thus authorization can indicate the source and/or type of
a bid for these purposes.

The priority should be registered in entirety. Thus, the meaning of priority

codes might be defined by registration. However, it may be desirable to have

priorities have simple linear precedence order, with higher values representing
higher priorities. One possible solution, is to define the first, or the first and
second bytes of the priority to be linear magnitude precedence priority codes.

Subsequent bytes, however, could be registered codes, with unique meanings

which are standardized to help resolve priority conflicts.

Other than the potential interactions of authorization on priority and bid/value,
authorization can have the following very important uses:

A.7.8 The Authorization Field

Uses of authorization

1. Pay-per view target encryption codes (in lock step with receiving system).

2. Channel authorization. For example, is a Satellite downlink channel
signal authorized for use as a cable head-end?

3. Channel routing authorizations. For instance, are all authorized
destinations only on network fork A, such that a source for sub-networks
A and B need not carry the payload to sub-network B. This is the
function of supporting a subset of all of the outputs involved in a "Y"
connection.

-42 -

4. End user authorization for teleconferencing, to indicate who can be
included in the teleconference, including who may observe and who may

originate.

5. Privacy and protection against unauthorized acceptance or origination of
the signal in any use. For example, protection against real-time
datastream "hackers", or against unauthorized video-phone "wire

tapping".

6. Authorized user enablement codes. Such codes would authorize user
systems for future authorized codes. For example, when a cable
subscriber adds a new channel, an enablement code would be sent to
their decoder to add authorization interpretation and viewing for the new
channel.

7. Diagnostic, statistic, and rating codes for exploring network loads, active
users, show ratings, unintentional network disconnects, channel error

rates, etc.
8. Copyright information indicating ownership.
9. Copyright fee structures, inciuding where to pay fees.

10. Indications of who may edit a work, and whether it may be included in
- other works, and fee structures for doing so.

11. Possibly an automated mechanism could be constructed to automatically
negotiate rights based on pre-arranged "willing to pay" algorithms, so that
clips can be included without undue complication.

A.7.9 Encryption

One function of the transport header is to provide one or more encryption keys
for deciphering the payload and descriptor.

Many protected users may wish to protect against unauthorized deciphering of
the descriptor, since it may contain valuable information which could help in
deciphering the payload. Codes could be used for encryption keys, for example,
to unlock descriptors. Descriptors, in turn, may contain more elaborate
encryption codes to further unlock the payload.

Based upon successful authorization code interactions, encryption codes can be
deciphered and applied against the descriptor, the payload, or both.

As usual, a type O represents that no encryption fleld is present. 15 types are
available, with 15 pre-specified associated lengths, for encryption.

Although the lengths must be prespecified, the meaning of the encryption, or its
associated technique, can be completely private.

- 483 -

Complex encryption algorithms can be developed and updated between
imbedded codes in the receiving device, codes in the descriptor, and possibly
algorithms transmitted and updated via descriptors.

A.7.10 Sequence Numbers

The sequence numbering field specifies not only packet ordering, but also
windows of order and groupings. For example, in some systems various
headers and their associated payloads form packets which can update the
screen in any order during the frame time before the buffer switch for viewing.
However, motion vectors might need to precede compressed image deltas. Thus
not only packet grouping, but packet general ordering might be specified.

On some networks, lower priority packets are delayed, rather than dropped. In
such networks, it is necessary for the network controlling mechanisms to
understand the bounds on acceptable delay for packets and groups of packets.

This field contains a series of codes for defining tolerance of imagery and other
real-time streams for being received out-of-order.

Type 0 means no sequence field is present. 15 valid type fields with the
associated pre-specified lengths are available.

A.7.11 Timing Reconstruction

In real-time data streams, it is often necessary to reconstruct precise timing
after this timing is disrupted during transport. Timing reconstruction
information, concerning the times at which events should occur, are specified in
this field. Times can be specified as absolute times, where the transport delays
and their bounds are known. Relative times can be specified relative to an
arbitrary "start of real-time stream" clock marker which is set by the receiving
device upon receiving the first displayable buffer load.

Synchronization between audio and image, between multiple audio streams, or
between streams from multiple sources, is handled via the timing
reconstruction fleld.

Re-synchronization for removing cumulative jitter effects can also be enabled
through the use of this field.

A type of O indicates an absence of the timing reconstruction field. The fifteen
available codes will have prespecified lengths, although their timing meanings
may be deferred from some of the types. Of course, each of the types can only
receive a single meaning, which meaning must stay in place from then on. The
lengths for such unspecified codes must all be specified in advance, however.

A.7.12 Reserved For the Future

This field is unspecified in content and length. Because the total length of the
transport header is known, and because this is the last field in the header prior

to the pad, this field{_ can maintain flexibility for future use by remaining
completely unspecified.

All other flelds must at least have their lengths specified for each type value.

A.7.13 Pad Bits

Pad Bits make the lengths simple for error correction processing. This is
accomplished by making the total of the error correction/protection field range
be the appropriate length for the error correction format being used. For
example, using a 64-bit length type, the length after the error
protection/correction fleld must be a multiple of 64 bits. Thus if the scope of
the protection includes additional transport flelds, such as priority and
encryption, plus a header and its descriptor, the pad bits would make the sum
a proper multiple of 64 bits.

-45-

APPENDIX B

ILLUSTRATIVE EXAMPLES OF
HEADER DECODING USING "C"

B.O Background

It is often instructive to represent a design as a computer program written in
some appropriate language (in this case C). It verifies the design and provides a
basis for comparing the cost and performance of design alternatives. The C
language was chosen because it is reasonably universal.

Conciseness and consistency are foremost considerations in enabling compre-
hension and fair comparison; optimal performance is of secondary importance.
Optimizations and enhancements would be added in preparation for commer-
cial distribution.

Two programs are described.: One decodes a compact header and one
decodesan ASN.1 header. They are similar in appearance and use the same
basic steps. The primary difference is the compact header decoder selects
between multiple formats using table lookups, while an ASN.1 header has only
one extensible format.

Each program extracts the block length and standard identifier from the
header, and then calls a corresponding function‘to process the payload.

B.1 Compact Header Decoder

The following program decodes a packet with a compact header. If the packet
format is predefined, it calls the corresponding predefined function, otherwise it
extracts the standard identifier and block length in a manner similar to the
algorithm described in Section 5.2.8. It uses the identifier to lookup a decoding
function (f), and ignores any blocks with unknown identifiers.

Two table lookups are used to decode the compact header. The length-type
table (It table} contains information used to decode predefined messages and
block length. The identifier table (id table) contains information used to decode
the standard identifier.

One obvious optimization is to combine the two table lookups into a single 256
entry lookup. This reduces the instruction path for some cases, but increases
memory requirements,

The identifier is left as a string of bytes used to compute a hash table lookup of
a decoding function. If a sovereign state field exists, it is processed together
with the standard identifier, but a separate hash table is used. The hash table
lookup is performed by the procedure lookup() which takes identifier address,

identifier length, and table selection as arguments, and returns a pointer to the
corresponding function (f).

B.1.1 Cautionary Notes

Certain header formats are not yet defined or are reserved for future use. The
program below does not support these formats.

Predefined message types are not yet standardized. To make the code complete
a dummy function call fake() has been used. When the functions are
standardized, the 1t table would change accordingly.

Block length is assumed to fit within one 32 bit word. Extending the program
and/or the C language to support larger word sizes, thus larger block lengths,
is possible and likely to happen as 64 bit processor architectures emerge.

Bit field ordering and assignment are not yet defined. Choices made in the
program below will require further consideration in the context of
standardization.

If an unknown identifier is encountered, the lookup function will return a

pointer to an appropriate default function that ignores the payload and displays
an informative message.

le.2 Program Text
The program has two parts---the first part contains table and procedure
declarations, the second part (at the end) contains the dozen or so statements

actually executed. Throughout the code descriptive notes (comments that are
not executed) are placed between comment delimiters (/*...*/).

/* Compact header has one of two forms:
*

* Each character in the strings below represents a byte; bytes between
* square brackets are optional; payload bytes are not counted
*

* 2 byte (minimum) for predefined messages:

*

* "ke[p...p]"

*

* Extended header for longer blocks:

*

* "kell..llle...ell...i]"

x

* Key:

k :: key byte (length type and id type, presence of a readable descriptlon)

e :: error byte
1 :: length byte

i:1d byte

* # % # »

- 47 -

